GA-688N

GA-686N is an advanced halogen-free high Tg 210 $\mathcal{C}(DMA)$ ultra low-loss multifunctional epoxy laminate. Superior electrical performance are suitable for high frequency high speed telecommunications. The characteristics of low transmission loss and low degree of distortion can be mainly suitable for base station platform, cloud computing, storage and advanced servers.

Key Features

Tg: 210 $\mathcal{C}(DMA)$

This material with high performance multi-function resin , crosslink density is high. Material Tg values can reach 210 $\mathcal{C}(DMA)$.

Dk: 3.20 & Df: 0.0012

Material has superior electrical properties, is conducive to the high frequency high-speed transmission, and high density wiring design. The lower signal loss can ensure signal integrity.

Z-CTE(50-260):2.2%

Its remarkable very low expansion coefficient, is more suitable for making high multilayer PCB, ensure the reliability of high temperature welding and assembly process.

Td: 380℃

Excellent resistance to aging temperature, keep the material performance in high thermal shock or high temperature environment impact.

Laminate: GA-688N Prepreg: GA-688NB

Applications

- Multilayer PCB
- Servers
- Storage
- Router/Switch
- RF/Wireless Communication
- Line cards

Industrial Approvals

Flammability Rating: 94V-0

Normal Size & Thickness

Thickness	Size	Thickness Tolerance	
Inch (mm)	Inch mm		
0.002 (0.05)	49×37 1244×0940		
То	49×41 1244×1042	IPC-4101 Class C/M	
0.125 (3.2)	49×43 1244×1093		

Characteristic		Unit	Test Method		spec
GA-688N (Low-Dk glass)			IPC-TM-650 (or as noted)	Typical data	
Volume Resistivity		MΩ-cm	2.5.17.1	2X10 ⁹	≧10 ⁶
Surface Resistivity		MΩ	2.5.17.1	1X10 ⁸	≥10 ⁵
Permittivity (RC70%)	At 1GHz		2.5.5.15	3.20	1
	At 5GHz		2.5.5.15	3.10	1
	At 10GHz		2.5.5.15	3.05	/
	At 15GHz		2.5.5.15	3.00	/
Loss Tangent (RC70%)	At 1GHz		2.5.5.15	0.0012	/
	At 5GHz		2.5.5.15	0.0013	1
	At 10GHz	-	2.5.5.15	0.0016	1
	At 15GHz		2.5.5.15	0.0018	/
Arc Resistance		Sec	2.5.1	120	≧60
Dielectric Breakdown		KV	2.5.6	40	≥40
Electric Strength(thickness<0.5mm)		KV/mm	2.5.6.2	40	≥30
Thermal Stress Test		-	2.4.13.1	Pass	Pass
Td (5% Weight loss)		°C	2.4.24.6	380	≥340
Glass Transition	DMA	$^{\circ}\!\mathbb{C}$	2.4.24.4	210	≧205
Temperature	DSC	$^{\circ}\!\mathbb{C}$	2.4.25	190	≧185
T288		Min	2.4.24.1	≧60	≥15
T300		Min	2.4.24.1	≧60	≧2
Z-Axis CTE	Before Tg	PPM/℃	2.4.24	45	≦60
	After Tg	PPM/℃		250	≦300
Z-Axis CTE (50~260°C)		%	2.4.24	2.2	≦2.8
Peel Strength (10Z HVLP3)		Lb/in	2.4.8	3.5	≧3 .0
Flexural Strength	LW	N/mm ²	2.4.4	410	≧345
	CW	N/mm²	2.4.4	350	≧345
Moisture Absorption		%	2.6.2.1	0.07	≦0.2
Flammability		-	UL94	V-0	V-0

Note: 1.Test sample is 30mil 1/1(1078*10ply).

^{2.} The data above is only for reference, and the actual data will have deviation, according to varieties of test equipment and method